3.677 \(\int \frac{(d+e x)^{5/2}}{(f+g x)^2 (a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\)

Optimal. Leaf size=268 \[ \frac{5 g^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} (f+g x) (c d f-a e g)^3}+\frac{5 c d g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{(c d f-a e g)^{7/2}}+\frac{10 g \sqrt{d+e x}}{3 (f+g x) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}-\frac{2 (d+e x)^{3/2}}{3 (f+g x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)} \]

[Out]

(-2*(d + e*x)^(3/2))/(3*(c*d*f - a*e*g)*(f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (10*g*Sqrt[
d + e*x])/(3*(c*d*f - a*e*g)^2*(f + g*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (5*g^2*Sqrt[a*d*e + (c
*d^2 + a*e^2)*x + c*d*e*x^2])/((c*d*f - a*e*g)^3*Sqrt[d + e*x]*(f + g*x)) + (5*c*d*g^(3/2)*ArcTan[(Sqrt[g]*Sqr
t[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(c*d*f - a*e*g)^(7/2)

________________________________________________________________________________________

Rubi [A]  time = 0.340196, antiderivative size = 268, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {868, 872, 874, 205} \[ \frac{5 g^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} (f+g x) (c d f-a e g)^3}+\frac{5 c d g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{(c d f-a e g)^{7/2}}+\frac{10 g \sqrt{d+e x}}{3 (f+g x) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}-\frac{2 (d+e x)^{3/2}}{3 (f+g x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(5/2)/((f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)),x]

[Out]

(-2*(d + e*x)^(3/2))/(3*(c*d*f - a*e*g)*(f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (10*g*Sqrt[
d + e*x])/(3*(c*d*f - a*e*g)^2*(f + g*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (5*g^2*Sqrt[a*d*e + (c
*d^2 + a*e^2)*x + c*d*e*x^2])/((c*d*f - a*e*g)^3*Sqrt[d + e*x]*(f + g*x)) + (5*c*d*g^(3/2)*ArcTan[(Sqrt[g]*Sqr
t[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(c*d*f - a*e*g)^(7/2)

Rule 868

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(c*e*f + c*d*g - b*e*g)), x]
 + Dist[(e^2*g*(m - n - 2))/((p + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*
x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[
c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[p, -1] && RationalQ[n]

Rule 872

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((n + 1)*(c*e*f + c*d*g - b*e*g)), x
] - Dist[(c*e*(m - n - 2))/((n + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x
^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^
2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{5/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{(5 g) \int \frac{(d+e x)^{3/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 (c d f-a e g)}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{10 g \sqrt{d+e x}}{3 (c d f-a e g)^2 (f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{\left (5 g^2\right ) \int \frac{\sqrt{d+e x}}{(f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{(c d f-a e g)^2}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{10 g \sqrt{d+e x}}{3 (c d f-a e g)^2 (f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{5 g^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(c d f-a e g)^3 \sqrt{d+e x} (f+g x)}+\frac{\left (5 c d g^2\right ) \int \frac{\sqrt{d+e x}}{(f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 (c d f-a e g)^3}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{10 g \sqrt{d+e x}}{3 (c d f-a e g)^2 (f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{5 g^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(c d f-a e g)^3 \sqrt{d+e x} (f+g x)}+\frac{\left (5 c d e^2 g^2\right ) \operatorname{Subst}\left (\int \frac{1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x}}\right )}{(c d f-a e g)^3}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{10 g \sqrt{d+e x}}{3 (c d f-a e g)^2 (f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{5 g^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(c d f-a e g)^3 \sqrt{d+e x} (f+g x)}+\frac{5 c d g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{c d f-a e g} \sqrt{d+e x}}\right )}{(c d f-a e g)^{7/2}}\\ \end{align*}

Mathematica [C]  time = 0.0489586, size = 75, normalized size = 0.28 \[ -\frac{2 c d (d+e x)^{3/2} \, _2F_1\left (-\frac{3}{2},2;-\frac{1}{2};\frac{g (a e+c d x)}{a e g-c d f}\right )}{3 ((d+e x) (a e+c d x))^{3/2} (c d f-a e g)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(5/2)/((f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)),x]

[Out]

(-2*c*d*(d + e*x)^(3/2)*Hypergeometric2F1[-3/2, 2, -1/2, (g*(a*e + c*d*x))/(-(c*d*f) + a*e*g)])/(3*(c*d*f - a*
e*g)^2*((a*e + c*d*x)*(d + e*x))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.31, size = 424, normalized size = 1.6 \begin{align*}{\frac{1}{3\, \left ( cdx+ae \right ) ^{2} \left ( aeg-cdf \right ) ^{3} \left ( gx+f \right ) }\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade} \left ( 15\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) \sqrt{cdx+ae}{x}^{2}{c}^{2}{d}^{2}{g}^{3}+15\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) xacde{g}^{3}\sqrt{cdx+ae}+15\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) \sqrt{cdx+ae}x{c}^{2}{d}^{2}f{g}^{2}+15\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) acdef{g}^{2}\sqrt{cdx+ae}-15\,\sqrt{ \left ( aeg-cdf \right ) g}{x}^{2}{c}^{2}{d}^{2}{g}^{2}-20\,\sqrt{ \left ( aeg-cdf \right ) g}xacde{g}^{2}-10\,\sqrt{ \left ( aeg-cdf \right ) g}x{c}^{2}{d}^{2}fg-3\,\sqrt{ \left ( aeg-cdf \right ) g}{a}^{2}{e}^{2}{g}^{2}-14\,\sqrt{ \left ( aeg-cdf \right ) g}acdefg+2\,\sqrt{ \left ( aeg-cdf \right ) g}{c}^{2}{d}^{2}{f}^{2} \right ){\frac{1}{\sqrt{ex+d}}}{\frac{1}{\sqrt{ \left ( aeg-cdf \right ) g}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(5/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)

[Out]

1/3*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(15*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*(c*d*x+a*
e)^(1/2)*x^2*c^2*d^2*g^3+15*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*x*a*c*d*e*g^3*(c*d*x+a*e)^(1/
2)+15*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*(c*d*x+a*e)^(1/2)*x*c^2*d^2*f*g^2+15*arctanh((c*d*x
+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*a*c*d*e*f*g^2*(c*d*x+a*e)^(1/2)-15*((a*e*g-c*d*f)*g)^(1/2)*x^2*c^2*d^2*
g^2-20*((a*e*g-c*d*f)*g)^(1/2)*x*a*c*d*e*g^2-10*((a*e*g-c*d*f)*g)^(1/2)*x*c^2*d^2*f*g-3*((a*e*g-c*d*f)*g)^(1/2
)*a^2*e^2*g^2-14*((a*e*g-c*d*f)*g)^(1/2)*a*c*d*e*f*g+2*((a*e*g-c*d*f)*g)^(1/2)*c^2*d^2*f^2)/(e*x+d)^(1/2)/(c*d
*x+a*e)^2/(a*e*g-c*d*f)^3/(g*x+f)/((a*e*g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{5}{2}}}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{5}{2}}{\left (g x + f\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(5/2)/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)*(g*x + f)^2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.9781, size = 3753, normalized size = 14. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

[-1/6*(15*(c^3*d^3*e*g^2*x^4 + a^2*c*d^2*e^2*f*g + (c^3*d^3*e*f*g + (c^3*d^4 + 2*a*c^2*d^2*e^2)*g^2)*x^3 + ((c
^3*d^4 + 2*a*c^2*d^2*e^2)*f*g + (2*a*c^2*d^3*e + a^2*c*d*e^3)*g^2)*x^2 + (a^2*c*d^2*e^2*g^2 + (2*a*c^2*d^3*e +
 a^2*c*d*e^3)*f*g)*x)*sqrt(-g/(c*d*f - a*e*g))*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - 2*sqrt(c*d*e*x^2 + a*
d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*e*g)*sqrt(e*x + d)*sqrt(-g/(c*d*f - a*e*g)) - (c*d*e*f - (c*d^2 + 2*a*e^2)
*g)*x)/(e*g*x^2 + d*f + (e*f + d*g)*x)) - 2*(15*c^2*d^2*g^2*x^2 - 2*c^2*d^2*f^2 + 14*a*c*d*e*f*g + 3*a^2*e^2*g
^2 + 10*(c^2*d^2*f*g + 2*a*c*d*e*g^2)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(a^2*c^3*d
^4*e^2*f^4 - 3*a^3*c^2*d^3*e^3*f^3*g + 3*a^4*c*d^2*e^4*f^2*g^2 - a^5*d*e^5*f*g^3 + (c^5*d^5*e*f^3*g - 3*a*c^4*
d^4*e^2*f^2*g^2 + 3*a^2*c^3*d^3*e^3*f*g^3 - a^3*c^2*d^2*e^4*g^4)*x^4 + (c^5*d^5*e*f^4 + (c^5*d^6 - a*c^4*d^4*e
^2)*f^3*g - 3*(a*c^4*d^5*e + a^2*c^3*d^3*e^3)*f^2*g^2 + (3*a^2*c^3*d^4*e^2 + 5*a^3*c^2*d^2*e^4)*f*g^3 - (a^3*c
^2*d^3*e^3 + 2*a^4*c*d*e^5)*g^4)*x^3 + ((c^5*d^6 + 2*a*c^4*d^4*e^2)*f^4 - (a*c^4*d^5*e + 5*a^2*c^3*d^3*e^3)*f^
3*g - 3*(a^2*c^3*d^4*e^2 - a^3*c^2*d^2*e^4)*f^2*g^2 + (5*a^3*c^2*d^3*e^3 + a^4*c*d*e^5)*f*g^3 - (2*a^4*c*d^2*e
^4 + a^5*e^6)*g^4)*x^2 - (a^5*d*e^5*g^4 - (2*a*c^4*d^5*e + a^2*c^3*d^3*e^3)*f^4 + (5*a^2*c^3*d^4*e^2 + 3*a^3*c
^2*d^2*e^4)*f^3*g - 3*(a^3*c^2*d^3*e^3 + a^4*c*d*e^5)*f^2*g^2 - (a^4*c*d^2*e^4 - a^5*e^6)*f*g^3)*x), 1/3*(15*(
c^3*d^3*e*g^2*x^4 + a^2*c*d^2*e^2*f*g + (c^3*d^3*e*f*g + (c^3*d^4 + 2*a*c^2*d^2*e^2)*g^2)*x^3 + ((c^3*d^4 + 2*
a*c^2*d^2*e^2)*f*g + (2*a*c^2*d^3*e + a^2*c*d*e^3)*g^2)*x^2 + (a^2*c*d^2*e^2*g^2 + (2*a*c^2*d^3*e + a^2*c*d*e^
3)*f*g)*x)*sqrt(g/(c*d*f - a*e*g))*arctan(-sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*e*g)*sqrt(e*
x + d)*sqrt(g/(c*d*f - a*e*g))/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) + (15*c^2*d^2*g^2*x^2 - 2*c^2*d^
2*f^2 + 14*a*c*d*e*f*g + 3*a^2*e^2*g^2 + 10*(c^2*d^2*f*g + 2*a*c*d*e*g^2)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 +
 a*e^2)*x)*sqrt(e*x + d))/(a^2*c^3*d^4*e^2*f^4 - 3*a^3*c^2*d^3*e^3*f^3*g + 3*a^4*c*d^2*e^4*f^2*g^2 - a^5*d*e^5
*f*g^3 + (c^5*d^5*e*f^3*g - 3*a*c^4*d^4*e^2*f^2*g^2 + 3*a^2*c^3*d^3*e^3*f*g^3 - a^3*c^2*d^2*e^4*g^4)*x^4 + (c^
5*d^5*e*f^4 + (c^5*d^6 - a*c^4*d^4*e^2)*f^3*g - 3*(a*c^4*d^5*e + a^2*c^3*d^3*e^3)*f^2*g^2 + (3*a^2*c^3*d^4*e^2
 + 5*a^3*c^2*d^2*e^4)*f*g^3 - (a^3*c^2*d^3*e^3 + 2*a^4*c*d*e^5)*g^4)*x^3 + ((c^5*d^6 + 2*a*c^4*d^4*e^2)*f^4 -
(a*c^4*d^5*e + 5*a^2*c^3*d^3*e^3)*f^3*g - 3*(a^2*c^3*d^4*e^2 - a^3*c^2*d^2*e^4)*f^2*g^2 + (5*a^3*c^2*d^3*e^3 +
 a^4*c*d*e^5)*f*g^3 - (2*a^4*c*d^2*e^4 + a^5*e^6)*g^4)*x^2 - (a^5*d*e^5*g^4 - (2*a*c^4*d^5*e + a^2*c^3*d^3*e^3
)*f^4 + (5*a^2*c^3*d^4*e^2 + 3*a^3*c^2*d^2*e^4)*f^3*g - 3*(a^3*c^2*d^3*e^3 + a^4*c*d*e^5)*f^2*g^2 - (a^4*c*d^2
*e^4 - a^5*e^6)*f*g^3)*x)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(5/2)/(g*x+f)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x